LLM fine-tuning에 대한 완전한 가이드
대규모 언어 모델 (LLM)의 미세 조정에 대한 글입니다. LLM은 기본적으로 광범위한 데이터셋으로 훈련되었지만 특정 애플리케이션에 적합하게 만들기 위해서는 종종 세밀 조정이 필요합니다. 세밀 조정은 모델을 새로운 데이터에 다시 훈련시키는 과정입니다. 이 글에서는 다양한 LLM 세밀 조정 기술과 그 사용 시점, 그리고 그것을 사용하지 않아야 할 시점에 대해 다루고 있습니다.
대규모 언어 모델 (LLM)의 미세 조정에 대한 글입니다. LLM은 기본적으로 광범위한 데이터셋으로 훈련되었지만 특정 애플리케이션에 적합하게 만들기 위해서는 종종 세밀 조정이 필요합니다. 세밀 조정은 모델을 새로운 데이터에 다시 훈련시키는 과정입니다. 이 글에서는 다양한 LLM 세밀 조정 기술과 그 사용 시점, 그리고 그것을 사용하지 않아야 할 시점에 대해 다루고 있습니다.
How to write better ChatGPT prompts for the best generative AI results 최상의 결과를 얻기 위해 효과적인 챗봇 프롬프트를 작성하는 것은 한 종류의 예술입니다. 여러분의 프롬프트 작성 능력을 향상시키는 방법은 다음과 같습니다. GIGO. 이는 1957년에 미국 육군의 윌리엄 멜린이 신문 기자에게 컴퓨터는 입력된 데이터에 따라 한계를 가진다고 설명했을 때부터 사용된 약어입니다. “Garbage In, Garbage Out”…
ChainForge는 프롬프트 엔지니어링 전용입니다. 이것은 시각적 프로그래밍 환경을 제공하여 코드 작성 없이 작업을 용이하게 합니다. 사용자는 그래픽 인터페이스를 통해 프롬프트 최적화를 진행할 수 있습니다.
ChainForge는 프롬프트 엔지니어링, LLM 평가 및 실험을 위한 오픈소스 시각 프로그래밍 환경입니다. ChainForge를 사용하면 코딩이 거의 필요하지 않거나 전혀 필요하지 않은 상태에서 프롬프트와 텍스트 생성 모델의 견고성을 평가할 수 있습니다. 기능은 다음과 같습니다: UI 개요 이 페이지는 ChainForge의 사용자 인터페이스를 설명하며 툴바의 모든 버튼을 포함합니다. 아래에는 인터페이스의 스크린샷이 있습니다. 이 인터페이스는 사용자가 잘못되었다고 알려주면 채팅…
체인 오브 써트 프롬프팅은 복잡한 문제를 중간 단계로 분해하고 각 단계를 해결함으로써 문제의 최종 답변을 도출하는 사람의 생각 과정을 모방하는 기법이다. 이 연구에서는, 체인 오브 써트 프롬프팅이 언어 모델의 연산 능력을 향상시키며, 모델이 제공하는 답변의 행동을 해석하는 창을 제공한다는 것을 보여준다. 특히, 큰 언어 모델에서는 체인 오브 써트 프롬프팅이 성능을 크게 향상시키며, 일부 벤치마크에서는 최신 기술을 초월하는 성과를 달성한다.
생각의 뼈대(Skeleton-of-Thought, SoT)는 대화형 AI 응용 프로그램에서 질문에 대한 응답을 속도 높게 생성하기 위한 새로운 프롬프트 엔지니어링 방식입니다. SoT는 먼저 대답의 뼈대나 개요를 생성한 다음, 이 개요에 따라 자세한 내용을 병렬적으로 확장합니다. 이 방법은 특히 복잡하고 다양한 질문에 대한 응답을 구성할 때 시간을 절약할 수 있으며, 여러 테스트 케이스에서 효과적이라는 것이 연구에서 밝혀졌습니다.
Vicuna-13B는 사용자가 공유한 대화를 통해 LLaMA 모델을 미세조정하여 개발된 오픈 소스 챗봇입니다. 초기 평가에서는 GPT-4를 기준으로 Vicuna-13B가 OpenAI ChatGPT와 Google Bard의 품질의 90% 이상을 달성하며, 다른 모델들보다 90% 이상의 경우에서 더 나은 성능을 보였습니다. Vicuna의 훈련 비용은 대략 $300입니다.
Catching up on the weird world of LLMs 일요일에 North Bay Python에서 나는 ChatGPT, Google Bard, Llama 2와 같은 도구의 기반이 되는 기술인 거대 언어 모델(Large Language Models, LLMs)의 최근 몇 년 동안의 발전을 요약하려고 노력했습니다. 내 목표는 이 분야에 완전히 푹 빠져 있지 않은 사람들이 무슨 일이 일어나고 있는지 알 수 있도록 도와주는 것이었습니다….
OpenAI와 Meta의 Llama 2는 현재 가장 주목받는 AI 언어 모델입니다. OpenAI는 사용자 친화적이며 쉽게 설정할 수 있는 장점이 있지만, 맞춤형 솔루션 제작에는 제한이 있습니다. 반면, Llama 2는 오픈 소스이며, 미세 조정이 가능하여 기업의 맞춤형 요구 사항을 만족시킬 수 있는 잠재력을 보유하고 있습니다. 비용, 성능, 사용 용이성 등 여러 요소를 고려할 때, 각기 다른 비즈니스에는 다른 모델이 더 적합할 수 있습니다.
연구자들은 대규모 언어 모델(LLM)의 성능 향상을 위해 감정적인 자극을 프롬프트에 포함시키는 EmotionPrompt 방식을 개발했습니다. 이 방식은 심리학에서 영감을 받아, 감정적 문장을 프롬프트에 추가하여 모델의 반응을 향상시켰습니다. 연구 결과, 네 가지 다른 LLM에서 여덟 가지 작업의 성능이 10% 이상 향상되었습니다. 이 연구는 인간-LLM 상호 작용을 향상시키기 위한 새로운 접근법을 제시하지만, 일반화와 효과성에 대한 추가 연구가 필요하다.