LLM 출력 파싱: 함수 호출 vs. LangChain
LLM 기반 애플리케이션의 출력을 통제하기 위한 방법에는 여러 가지가 있습니다. OpenAI의 Function Calling 기능은 출력을 일관되게 제공하는 반면, LangChain은 다양한 LLM과 출력 형식을 지원하며 유연성이 특징입니다. 선택은 사용하는 모델, 출력 형식, 그리고 특정 문제의 요구사항에 따라 달라질 수 있습니다.
LLM 기반 애플리케이션의 출력을 통제하기 위한 방법에는 여러 가지가 있습니다. OpenAI의 Function Calling 기능은 출력을 일관되게 제공하는 반면, LangChain은 다양한 LLM과 출력 형식을 지원하며 유연성이 특징입니다. 선택은 사용하는 모델, 출력 형식, 그리고 특정 문제의 요구사항에 따라 달라질 수 있습니다.
파인튜닝과 의미론적 검색은 자연어 처리에서의 서로 다른 접근법을 제시한다. 파인튜닝은 특정 작업을 위한 모델의 성능 개선에 초점을 맞추는 반면, 의미론적 검색은 문서의 의미를 벡터 형태로 임베딩하여 빠르고 정확한 정보 검색을 가능하게 한다. 각 방법은 특정한 상황과 목표에 따라 그 장점을 최대화할 수 있다.