파인튜닝과 의미론적 검색의 선택

파인튜닝과 의미론적 검색은 자연어 처리에서의 서로 다른 접근법을 제시한다. 파인튜닝은 특정 작업을 위한 모델의 성능 개선에 초점을 맞추는 반면, 의미론적 검색은 문서의 의미를 벡터 형태로 임베딩하여 빠르고 정확한 정보 검색을 가능하게 한다. 각 방법은 특정한 상황과 목표에 따라 그 장점을 최대화할 수 있다.

Read More

프롬프트 엔지니어링: AI를 속여서 문제를 해결하는 방법

프롬프트 엔지니어링은 개발자가 응용 프로그램을 구축하는 새로운 방법으로, 여러 가지 기술을 활용하여 대형 언어 모델(Large Language Models, LLMs)의 성능을 최적화할 수 있습니다. LangChain 같은 라이브러리를 이용하면, 개발자들은 이러한 모델을 활용하여 사용자 친화적인 애플리케이션을 구축할 수 있습니다. 그러나 프롬프트 엔지니어링에는 LLM에 의존적이라는 제한점이 있고, 이로 인해 발생하는 컴퓨팅 및 재정 비용을 고려해야 합니다.

Read More

MetaGPT를 활용한 혁신적 멘토-멘티 매칭 플랫폼 개발 과정

metaGPT를 활용하여 Generative AI 기반의 멘토-멘티 매칭 웹 사이트를 개발하는 프로젝트를 계획하였습니다. 이 웹 사이트는 사용자의 도전과 문제점을 기반으로 개인화된 멘토 제안을 제공하며, 경쟁 제품 분석, 요구사항 정의, UI 디자인, 및 구현 접근법 등의 단계를 포함합니다.

Read More

MetaGPT: 지금 당장 사용할 수 있는 최고의 AI 에이전트에 대한 완벽한 가이드

MetaGPT는 대형 언어 모델을 활용한 다중 에이전트 시스템입니다. 이 시스템은 프로젝트 관리 기능과 코드 생성 능력을 결합하여 복잡한 작업을 자동화합니다. MetaGPT의 아키텍처는 기초 구성 요소 계층과 협업 계층으로 나뉩니다. 이 시스템은 지식 공유와 표준화된 운영 절차(SOPs)를 통해 에이전트 간의 협업을 효율적으로 관리합니다.

Read More

영어에 비해 다른 언어에서는 AI 이용료가 최대 15배 더 비싸다

AI Fees Up to 15x Cheaper for English Than Other Lang OpenAI GPT-3.5 Turbo와 GPT-4 비용 및 출력 결과 비교 대규모 언어 모델(Large Language Model, LLM)에 사용하는 언어는 그 비용에 큰 영향을 미치며, 영어 사용자와 e다른 언어 사용자 사이에 AI 격차를 만들 수 있습니다. 최근의 연구에 따르면, OpenAI와 같은 서비스가 서버 비용을 측정하고 청구하는 방식…

Read More

LLMs, RAG 및 AI를 위한 누락된 저장 계층

생성 AI와 LLMs는 인간과 유사한 텍스트 생성과 이해에서 중요한 진전을 이루었지만, 저장 계층이라는 아직 탐구되지 않은 분야가 있습니다. 이 계층은 학습한 지식을 저장할 수 있는 저장소 역할을 할 수 있으며, AI 시스템이 정보를 생성뿐만 아니라 저장하고 검색할 수 있게 하여 더 다양하고 효과적인 시스템을 만들 수 있습니다.

Read More

[논문]GPT-4와 CoD 프롬프트: 자동 요약에서의 밀도와 선호도

“Chain of Density (CoD)” 프롬프트는 자동 텍스트 요약을 향상시키기 위한 방법론입니다. 이 프롬프트는 GPT-4와 같은 큰 언어 모델을 사용하여 요약의 ‘밀도’를 조절합니다. 초기에는 간단한 요약을 생성하고, 이후에 중요한 정보를 점차 추가합니다. 연구 결과에 따르면, CoD 프롬프트를 사용한 요약은 인간 평가자에게 더 선호되며, 인간이 작성한 요약에 가까운 밀도를 가집니다. 이 방법은 요약이 적절한 수준의 정보를 제공하도록 도와줍니다.

Read More

LLM(대규모 언어 모델)을 활용한 자율 AI 에이전트 10선

LLM(대규모 언어 모델)은 OpenAI의 GPT-4, Google의 PaLM, Meta의 LLaMa와 같은 모델을 기반으로 합니다. 이러한 에이전트들은 환경을 인식하고 목표를 달성하기 위해 행동하며, 인간이나 다른 에이전트와 의사소통할 수 있습니다. 주목할 만한 LLM 기반 자율 AI 에이전트는 다음과 같습니다

Read More

AI 프로젝트를 위한 최고의 10개 벡터 데이터베이스

벡터 데이터베이스와 벡터 라이브러리는 머신 러닝, 자연어 처리, 이미지 인식 등의 AI 애플리케이션에서 벡터 유사성 검색을 가능하게 합니다. 데이터베이스는 다양한 데이터 소스와 쿼리 기능을 제공하며, 라이브러리는 주로 벡터만을 다루고 기술적 전문성이 더 필요합니다. 선택 시에는 사용자의 특정 필요와 요구 사항, 그리고 데이터의 종류와 크기를 고려해야 합니다.

Read More