Prompting, RAG 또는 Fine-tuning을 사용해야 할까요?

언어 모델 응용 프로그램(LLM)을 구축할 때 선택할 수 있는 여러 접근 방식에는 프롬프트 엔지니어링, 검색 증강 생성(RAG), 그리고 파인 튜닝이 있습니다. 각 접근 방식은 특정 작업의 성격, 훈련 데이터의 유무, 그리고 품질, 비용, 지연 시간 등에 따라 장단점이 있습니다. 일련의 질문을 통해 사용 사례에 가장 적합한 방법을 결정할 수 있으며, 이러한 방법들은 상호 보완적으로도 작동할 수 있습니다.

Read More

Fine-tuning LLMs

Fine-tuning LLMs Tasks to finetune Before Fine-tuning (base or pretrained model) Fine-turning 지도 학습 과정은 지시 프롬프트(instruction prompts)를 사용하여 언어 모델(LLM)을 미세 조정하는 것을 포함합니다. 지도 학습(supervised learning)은 머신 러닝의 한 분야로, 모델이 레이블이 지정된 데이터 세트에서 학습하는 방법입니다. 이러한 과정에서 모델은 입력 데이터와 해당 레이블 사이의 관계를 학습하려고 시도합니다. “언어 모델(LLM)”은 텍스트 데이터를 처리하고…

Read More

고급 AI 프롬프트 작성 프레임워크를 사용하여 결과 향상시키기

Advanced AI prompt writing framework’s to improve your results 고급 엔지니어링 프레임워크를 사용하여 AI 프롬프트의 출력을 제어하는 것은 프롬프트 작성에 어려움을 겪고 있거나 프롬프트를 더욱 세밀하게 조정하고 싶을 때 매우 유용할 수 있습니다. 이 가이드는 Guidance와 같은 이러한 프레임워크를 어떻게 사용할 수 있는지에 대한 개요를 제공합니다. 최초로 Microsoft에 의해 소개된 Guidance는 사용자가 특정 출력을 생성하기…

Read More

Spring AI는 OpenAI와 Azure OpenAI와의 통합을 제공합니다

Spring AI Provides Integration with OpenAI and Azure OpenAI Spring AI 프로젝트는 SpringOne 컨퍼런스 동안 소개되었으며, Spring의 일반적인 개념을 사용하여 AI 애플리케이션을 생성할 수 있게 해줍니다. 현재 이 프로젝트는 Azure OpenAI와 OpenAI를 AI 백엔드로 통합하고 있습니다. 콘텐츠 생성, 코드 생성, 의미론적 검색, 요약과 같은 사용 사례가 프로젝트에 의해 지원됩니다. 역사적으로, Python은 C와 C++와 같은 언어로 작성된…

Read More

LMQL, Python의 상위 집합인 방법으로 개발자가 LLM을 사용하는 데 어떻게 도움을 주는가

How LMQL, a Superset of Python, Helps Developers Use LLMs 이 블로그는 대규모 언어 모델(Large Language Models, LLMs)과의 상호작용에 있어 자연어의 한계에 대해 논의하고 있습니다. ETH Zürich의 박사과정 학생인 루카 부어러-켈너(Luca Beurer-Kellner)에 따르면, 자연어는 본질적으로 비공식적이고 덜 정확하다는 단점이 있습니다. 이 문제를 해결하기 위해 부어러-켈너와 그의 동료들은 Language Model Query Language (LMQL)이라는 새로운 프로그래밍 언어를…

Read More

어떻게 GPT4 데이터 없이 코드 LLMs를 명령어 튜닝할까요?

How to Instruction Tune Code LLMs without GPT4 Data? Meet OctoPack: A Set of AI Models for Instruction Tuning Code Large Language Models [논문] OCTOPACK: INSTRUCTION TUNING CODE LARGE LANGUAGE MODELS 큰 언어 모델(LLM)의 사용성 및 전체 성능은 지시어를 통해 제공된 다양한 언어 작업을 미세 조정함으로써 향상될 수 있다는 것이 증명되었습니다 (instruction tuning). 시각, 청각,…

Read More

어떻게 LLM 또는 ChatGPT를 이용하여 데이터 기반의 지능형 QA 챗봇을 구축하는가?

How to Build an Intelligent QA Chatbot on your data with LLM or ChatGPT How to deploy a LLM chatbot LLM(대규모 언어 모델)에 의해 강화된 지능형 챗봇의 세계를 소개합니다. 이 글에서는 조직의 질문 응답 챗봇에 LLM을 원활하게 통합하는 방법에 대해 깊이 다루겠습니다. 고수준의 시스템 디자인 요소와 코드 구현의 세세한 부분까지 깊숙이 소개합니다. 여러분의 Postgres 데이터베이스를…

Read More

오픈소스 LLMs인 Llama 2와 Falcon을 사용하여 챗봇을 만드는 방법

이 블로그에서는 오픈소스 LLMs를 사용하여 챗봇을 만드는 방법을 배울 것입니다. 우리는 Lit-GPT와 LangChain을 사용할 것입니다. Lit-GPT는 튜닝과 추론을 위한 오픈소스 LLMs의 최적화된 모음입니다. 이는 Falcon, Llama 2, Vicuna, LongChat 및 기타 성능이 뛰어난 오픈소스 대형 언어 모델을 지원합니다.

Read More

Generative AI project lifecycle

Generative AI 프로젝트의 수명 주기는 사용 사례를 정의하는 범위 설정, 기존 모델 선택 또는 자체 모델의 사전 훈련, 모델의 적응 및 조정, 그리고 응용 프로그램 통합으로 구성됩니다. 이 과정에서는 모델의 프롬프트 엔지니어링, 미세 조정, 인간의 피드백과 조정 및 성능 평가를 포함합니다. 마지막으로, 모델을 실제 환경에 배포하고, LLM 기술을 활용한 응용 프로그램을 개발합니다.

Read More